Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw

joint work with Boaz Tsaban

WS2016

Supported by Polish National Science Center UMO-2014/12/T/ST1/00627

Menger's property: for every open covers U_1, U_2, \ldots of X there are finite $V_1 \subset U_1, V_2 \subset U_2, \ldots$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers U_1, U_2, \ldots of X there are finite $V_1 \subset U_1, V_2 \subset U_2, \ldots$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers $U_1, U_2, ...$ of X there are finite $V_1 \subset U_1, V_2 \subset U_2, ...$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers U_1, U_2, \ldots of X there are finite $V_1 \subset U_1, V_2 \subset U_2, \ldots$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers $U_1, U_2, ...$ of X there are finite $V_1 \subset U_1, V_2 \subset U_2, ...$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers U_1, U_2, \ldots of X there are finite $V_1 \subset U_1, V_2 \subset U_2, \ldots$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers $U_1, U_2, ...$ of X there are finite $V_1 \subset U_1, V_2 \subset U_2, ...$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

Menger's property: for every open covers U_1, U_2, \ldots of X there are finite $V_1 \subset U_1, V_2 \subset U_2, \ldots$ such that $\bigcup \{ V_n : n \in \mathbb{N} \}$ covers X

 σ -compactness \to Menger \to Lindelöf


```
[\mathbb{N}]^{\infty}: infinite subsets of \mathbb{N} [\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}: increasing enumeration, [\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}
```

 $[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}

$$[\mathbb{N}]^\infty
i x = \{x(1), x(2), \ldots\}$$
: increasing enumeration, $[\mathbb{N}]^\infty pprox \mathbb{N}^{\uparrow \mathbb{N}}$

• $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n

$$[\mathbb{N}]^\infty \ni x = \{x(1), x(2), \ldots\}$$
: increasing enumeration, $[\mathbb{N}]^\infty \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$

$$[\mathbb{N}]^\infty \ni x = \{x(1), x(2), \ldots\}$$
: increasing enumeration, $[\mathbb{N}]^\infty \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$
- 0: minimal cardinality of a dominating set

$$[\mathbb{N}]^\infty \ni x = \{x(1), x(2), \ldots\}$$
: increasing enumeration, $[\mathbb{N}]^\infty \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$
- 0: minimal cardinality of a dominating set
- $y \leq^{\infty} d$ if $y(n) \leq d(n)$ for infinitely many n

 $[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}

$$[\mathbb{N}]^\infty
i x = \{x(1), x(2), \ldots\}$$
: increasing enumeration, $[\mathbb{N}]^\infty \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$
- 0: minimal cardinality of a dominating set
- $y \leqslant^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional.

X is Menger iff $\forall \varphi: X \xrightarrow{cont} [\mathbb{N}]^{\infty}$, $\varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$
- 0: minimal cardinality of a dominating set
- $y \leqslant^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional.

X is Menger iff $\forall \varphi: X \xrightarrow{cont} [\mathbb{N}]^{\infty}$, $\varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

• A Lindelöf X with $|X| < \mathfrak{d}$ is Menger.

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leq^* d$ if $x(n) \leq d(n)$ for almost all n
- *D* is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{d \in D} x \leq^* d$
- 0: minimal cardinality of a dominating set
- $y \leq^{\infty} d$ if $y(n) \leq d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional.

X is Menger iff $\forall \varphi: X \xrightarrow{cont} [\mathbb{N}]^{\infty}$, $\varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

- A Lindelöf X with $|X| < \mathfrak{d}$ is Menger.
- A dominating $X \subset [\mathbb{N}]^{\infty}$ is not Menger.

Todorčević (ZFC):

There is a Menger set whose square is not Menger.

Todorčević (ZFC):

There is a Menger set whose square is not Menger.

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subset \mathbb{R}$ such that M^2 is not Menger.

Todorčević (ZFC):

There is a Menger set whose square is not Menger.

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subset \mathbb{R}$ such that M^2 is not Menger.

Scheepers, Tsaban (
$$cov(\mathcal{M}) = cof(\mathcal{M})$$
):

There is a Menger $M \subset \mathbb{R}$ such that M^2 is not Menger.

$$|\mathbb{N}| = \aleph_0 \leqslant \mathsf{cov}(\mathcal{M}) \leqslant \mathfrak{d} \leqslant \mathsf{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}|$$

Todorčević (ZFC):

There is a Menger set whose square is not Menger.

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subset \mathbb{R}$ such that M^2 is not Menger.

Scheepers, Tsaban ($cov(\mathcal{M}) = cof(\mathcal{M})$):

There is a Menger $M \subset \mathbb{R}$ such that M^2 is not Menger.

$$|\mathbb{N}| = \aleph_0 \leqslant \mathsf{cov}(\mathcal{M}) \leqslant \mathfrak{d} \leqslant \mathsf{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}|$$

Problem (Scheepers)

Is there (ZFC) a Menger set $M \subset \mathbb{R}$ such that M^2 is not Menger?

 $P(\mathbb{N}) \approx \{0,1\}^{\omega}$: the Cantor space

 $P(\mathbb{N}) \approx \{0,1\}^{\omega}$: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0, 1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2, 4, 6, ...\} \mapsto (0, 1, 0, 1, 0, 1, ...) \in \{0, 1\}^{\omega}$

 $P(\mathbb{N}) pprox \{0,1\}^\omega$: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$P(\mathbb{N}) \approx \{0,1\}^{\omega}$$
: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$P(\mathbb{N}) pprox \{0,1\}^{\omega}$$
 : the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0, 1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2, 4, 6, \ldots\} \mapsto (0, 1, 0, 1, 0, 1, \ldots) \in \{0, 1\}^{\omega}$

$$P(\mathbb{N}) \approx \{0,1\}^{\omega}$$
: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$P(\mathbb{N}) pprox \{0,1\}^{\omega}$$
 : the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0, 1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2, 4, 6, \ldots\} \mapsto (0, 1, 0, 1, 0, 1, \ldots) \in \{0, 1\}^{\omega}$

$$P(\mathbb{N}) \approx \{0,1\}^{\omega}$$
: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$P(\mathbb{N}) \approx \{0,1\}^{\omega}$$
: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$P(\mathbb{N}) \approx \{0,1\}^{\omega}$$
: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

$$\tau: P(\mathbb{N}) \xrightarrow{\text{hom}} P(\mathbb{N}), \qquad \tau(a) = a^c = a \oplus \mathbb{N}$$

 $P(\mathbb{N}) pprox \{0,1\}^\omega$: the Cantor space

$$P(\mathbb{N}) \ni a \mapsto \chi(a) \in \{0,1\}^{\omega}$$

 $P(\mathbb{N}) \ni \{2,4,6,\ldots\} \mapsto (0,1,0,1,0,1,\ldots) \in \{0,1\}^{\omega}$

 $(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

$$\tau: P(\mathbb{N}) \xrightarrow{\mathsf{hom}} P(\mathbb{N}), \qquad \tau(\mathsf{a}) = \mathsf{a}^\mathsf{c} = \mathsf{a} \oplus \mathbb{N}$$

 $\begin{array}{lll} [\mathbb{N}]^{<\infty} & : & \text{finite subsets of } \mathbb{N} \\ [\mathbb{N}]^{\infty} & : & \text{infinite subsets of } \mathbb{N} \end{array}$

 $[\mathbb{N}]^{\infty,\infty}$: infinite co-infinite subsets of \mathbb{N}

κ -unbounded sets

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

if $|A| \geqslant \kappa$ and $\forall_{b \in [\mathbb{N}]^{\infty}} |\{ a \in A : a \leqslant^* b \}| < \kappa$

κ -unbounded sets

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

 $\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \}| < \kappa$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

 $\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \text{ } a \in A : a \leqslant^* b \}| < \kappa$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

if $|A| \geqslant \kappa$ and $\forall_{b \in [\mathbb{N}]^{\infty}} |\{ a \in A : a \leqslant^* b \}| < \kappa$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

 $\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \}| < \kappa$

 $A\subset [\mathbb{N}]^{\infty}$ is κ -unbdd and $\kappa\leqslant\mathfrak{d}\Longrightarrow A\cup [\mathbb{N}]^{<\infty}$ is Menger

$$A \cup [\mathbb{N}]^{<\infty} \subset P(\mathbb{N})$$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

$$\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \}| < \kappa$$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbdd and $\kappa \leqslant \mathfrak{d} \Longrightarrow A \cup [\mathbb{N}]^{<\infty}$ is Menger

$$A \cup [\mathbb{N}]^{<\infty} \subset P(\mathbb{N})$$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

$$\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \,\}| < \kappa$$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

if
$$|A| \geqslant \kappa$$
 and $\forall_{b \in [\mathbb{N}]^{\infty}} |\{ a \in A : a \leqslant^* b \}| < \kappa$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

 $cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists \ \textit{Menger} \ X, Y \subset P(\mathbb{N}) \ \textit{s.t.} \ X \times Y \ \textit{is not Menger}$

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

if
$$|A| \geqslant \kappa$$
 and $\forall_{b \in [\mathbb{N}]^{\infty}} |\{ a \in A : a \leqslant^* b \}| < \kappa$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

$$cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$$

• $\exists X \subset [\mathbb{N}]^{\infty}$, $|X| = cf(\mathfrak{d})$, X is $cf(\mathfrak{d})$ -unbdd

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

$$\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \}| < \kappa$$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

 $cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$

- $\exists X \subset [\mathbb{N}]^{\infty}$, $|X| = cf(\mathfrak{d})$, X is $cf(\mathfrak{d})$ -unbdd
- $|X| = cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow X$ is Menger

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

$$\text{if } |A| \geqslant \kappa \text{ and } \forall_{b \in [\mathbb{N}]^{\infty}} |\{ \ a \in A : a \leqslant^* b \}| < \kappa$$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

 $cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$

- $\exists X \subset [\mathbb{N}]^{\infty}$, $|X| = cf(\mathfrak{d})$, X is $cf(\mathfrak{d})$ -unbdd
- $|X| = cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow X$ is Menger
- \exists Menger $Y \subset [\mathbb{N}]^{\infty}$ s.t. $X \times Y$ is not Menger

 $A \subset [\mathbb{N}]^{\infty}$ is κ -unbounded

if
$$|A| \geqslant \kappa$$
 and $\forall_{b \in [\mathbb{N}]^{\infty}} |\{ a \in A : a \leqslant^* b \}| < \kappa$

Theorem (PS, Tsaban '15)

If $X \subset [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbdd set or a $cf(\mathfrak{d})$ -unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

 $cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\exists X \subset [\mathbb{N}]^{\infty}$, $|X| = cf(\mathfrak{d})$, X is $cf(\mathfrak{d})$ -unbdd
- $|X| = cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow X$ is Menger
- \exists Menger $Y \subset [\mathbb{N}]^{\infty}$ s.t. $X \times Y$ is not Menger

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbdd if A and $\{a^c : a \in A\}$ are \mathfrak{d} -unbdd

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbdd if A and $\{a^{c} : a \in A\}$ are \mathfrak{d} -unbdd

$$b = \{2, 4, 6, 8, \ldots\}$$

$$b \leqslant^* a \Rightarrow a^c \leqslant^* b$$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

• $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \text{ bi-d-unbdd } A \subset [\mathbb{N}]^{\infty, \infty}$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty, \infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty, \infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty, \infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^{\mathsf{c}}$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbdd if A and $\{a^{c}: a \in A\}$ are \mathfrak{d} -unbdd bidi: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leq^{\infty} b, b^{c}$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists Menger X, Y \subset P(\mathbb{N}) \text{ s.t. } X \times Y \text{ is not Menger}$

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty,\infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^{\mathsf{c}}$
- $\tau : P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a$ $X = \tau[A \cup [\mathbb{N}]^{<\infty}] = \{ a^{c} : a \in A \} \cup \tau[[\mathbb{N}]^{<\infty}] \subset [\mathbb{N}]^{\infty} \}$

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bi0i: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty, \infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^{\mathsf{c}}$
- $X = \tau[A \cup [\mathbb{N}]^{<\infty}] = \{ a^{c} : a \in A \} \cup \tau[[\mathbb{N}]^{<\infty}] \subset [\mathbb{N}]^{\infty} \}$
- $X \subset [\mathbb{N}]^{\infty}$ is Menger and contains a \mathfrak{d} -unbdd set

 $A \subset [\mathbb{N}]^{\infty,\infty}$ is bi-0-unbdd if A and $\{a^c : a \in A\}$ are 0-unbdd bidi: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^c$

Corollary

 $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{bidi} = \mathfrak{d} \Rightarrow \exists \mathsf{bi-d-unbdd} \ A \subset [\mathbb{N}]^{\infty, \infty}$
- $A \cup [\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^{\mathsf{c}}$
- $X = \tau[A \cup [\mathbb{N}]^{<\infty}] = \{ a^{c} : a \in A \} \cup \tau[[\mathbb{N}]^{<\infty}] \subset [\mathbb{N}]^{\infty} \}$
- $X \subset [\mathbb{N}]^{\infty}$ is Menger and contains a \mathfrak{d} -unbdd set
- \exists Menger $Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

bidi: min card of $A\subset [\mathbb{N}]^{\infty,\,\infty}$ s. t. there is no b with $A\leqslant^\infty b,b^\mathrm{c}$

$$\begin{split} \text{bidi: min card of } A \subset [\mathbb{N}]^{\infty,\infty} \text{ s. t. there is no } b \text{ with } A \leqslant^\infty b, b^c \\ |\mathbb{N}| &= \aleph_0 \leqslant \text{cov}(\mathcal{M}) \leqslant \text{bidi} \leqslant \mathfrak{d} \leqslant \text{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}| \\ &\max\{\mathfrak{b}, \text{cov}(\mathcal{M})\} \leqslant \text{bidi} \leqslant \min\{\mathfrak{r},\mathfrak{d}\} \end{split}$$

 $\mathfrak{r}:$ min card of $A\subset [\mathbb{N}]^{\infty}$ s.t. there is no $s\in [\mathbb{N}]^{\infty}$ with s and $s^{\mathtt{c}}$ intersect all $a\in A$

$$\begin{split} \text{bidi: min card of } A \subset [\mathbb{N}]^{\infty,\infty} \text{ s. t. there is no } b \text{ with } A \leqslant^\infty b, b^{\mathsf{c}} \\ |\mathbb{N}| &= \aleph_0 \leqslant \mathsf{cov}(\mathcal{M}) \leqslant \mathfrak{bidi} \leqslant \mathfrak{d} \leqslant \mathsf{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}| \\ &\max \{\mathfrak{b}, \mathsf{cov}(\mathcal{M})\} \leqslant \mathsf{bidi} \leqslant \mathsf{min} \{\mathfrak{r}, \mathfrak{d}\} \end{split}$$

Observation (Mejia, Kamburelis, Węglorz)

$$\mathfrak{bidi}=\min\{\mathfrak{r},\mathfrak{d}\}$$

 $\mathfrak x$: min card of $A\subset [\mathbb N]^\infty$ s.t. there is no $s\in [\mathbb N]^\infty$ with s and $s^{\mathsf c}$ intersect all $a\in A$

$$\begin{split} \mathfrak{bidi} \colon \min \ \mathsf{card} \ \mathsf{of} \ A \subset [\mathbb{N}]^{\infty,\infty} \ \mathsf{s.} \ \mathsf{t.} \ \mathsf{there} \ \mathsf{is} \ \mathsf{no} \ b \ \mathsf{with} \ A \leqslant^\infty b, b^\mathsf{c} \\ |\mathbb{N}| &= \aleph_0 \leqslant \mathsf{cov}(\mathcal{M}) \leqslant \mathfrak{bidi} \leqslant \mathfrak{d} \leqslant \mathsf{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}| \\ &\quad \mathsf{max} \{\mathfrak{b}, \mathsf{cov}(\mathcal{M})\} \leqslant \mathfrak{bidi} \leqslant \mathsf{min} \{\mathfrak{r}, \mathfrak{d}\} \end{split}$$

Observation (Mejia, Kamburelis, Węglorz)

$$\mathfrak{bidi} = \min\{\mathfrak{r},\mathfrak{d}\}$$

$$\mathfrak{bidi} = \mathfrak{d} \Leftrightarrow \mathfrak{d} \leqslant \mathfrak{r}$$

 $\mathfrak x$: min card of $A\subset [\mathbb N]^\infty$ s.t. there is no $s\in [\mathbb N]^\infty$ with s and $s^{\mathsf c}$ intersect all $a\in A$

bidi: min card of $A \subset [\mathbb{N}]^{\infty,\infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^{c}$ $|\mathbb{N}| = \aleph_{0} \leqslant \text{cov}(\mathcal{M}) \leqslant \text{bidi} \leqslant \mathfrak{d} \leqslant \text{cof}(\mathcal{M}) \leqslant \mathfrak{c} = |\mathbb{R}|$ $\max\{\mathfrak{b}, \text{cov}(\mathcal{M})\} \leqslant \text{bidi} \leqslant \min\{\mathfrak{r},\mathfrak{d}\}$

Observation (Mejia, Kamburelis, Węglorz)

$$\mathfrak{bidi} = \min\{\mathfrak{r},\mathfrak{d}\}$$

$$\mathfrak{bidi} = \mathfrak{d} \Leftrightarrow \mathfrak{d} \leqslant \mathfrak{r}$$

Problem

Assume $\mathfrak{r} < \mathfrak{d}$ and \mathfrak{d} is regular (e.g. in Miller's model). Is there a Menger set $M \subset \mathbb{R}$ such that M^2 is not Menger?

 $\mathfrak{r}:$ min card of $A\subset [\mathbb{N}]^{\infty}$ s.t. there is no $s\in [\mathbb{N}]^{\infty}$ with s and s^{c} intersect all $a\in A$

Hurewicz's property: for every open covers $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of X there are finite $\mathcal{V}_1 \subset \mathcal{U}_1, \mathcal{V}_2 \subset \mathcal{U}_2, \ldots$ such that $\{ n \in \mathbb{N} : x \in \bigcup \mathcal{V}_n \}$ is co-finite for all $x \in X$.

 σ -compactness \rightarrow Hurewicz \rightarrow Menger

Corollary $(\mathfrak{b} = \mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b} = \overline{\mathfrak{d}})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b} = \mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.

Corollary $(\mathfrak{b} = \mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b} = \mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.

 \mathfrak{F} -Menger's property: for every open covers $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of X there are finite $\mathcal{V}_1 \subset \mathcal{U}_1, \mathcal{V}_2 \subset \mathcal{U}_2, \ldots$ such that $\{n \in \mathbb{N} : x \in \bigcup \mathcal{V}_n\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

Corollary $(\mathfrak{b} = \mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b} = \mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.

 \mathfrak{F} -Menger's property: for every open covers $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of X there are finite $\mathcal{V}_1 \subset \mathcal{U}_1, \mathcal{V}_2 \subset \mathcal{U}_2, \ldots$ such that $\{n \in \mathbb{N} : x \in \bigcup \mathcal{V}_n\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

 $\mathsf{Hurewicz} o \mathfrak{F}\mathsf{-Menger} o \mathsf{Menger}$

Corollary $(\mathfrak{b} = \mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary ($\mathfrak{b} = \mathfrak{d}$)

In the class of metrizable spaces every productively Menger space is productively Hurewicz.

 \mathfrak{F} -Menger's property: for every open covers $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of X there are finite $\mathcal{V}_1 \subset \mathcal{U}_1, \mathcal{V}_2 \subset \mathcal{U}_2, \ldots$ such that $\{n \in \mathbb{N} : x \in \bigcup \mathcal{V}_n\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

 $\mathsf{Hurewicz} \to \mathfrak{F}\mathsf{-Menger} \to \mathsf{Menger}$

Corollary ($\mathfrak{b} = \mathfrak{d}$)

There is an ultrafilter $\mathfrak U$ such that in the class of sets of reals Hurewicz $\nleftrightarrow \mathfrak U$ -Menger \nleftrightarrow Menger