Products of Menger spaces

Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw

joint work with Boaz Tsaban

WS2016

Supported by Polish National Science Center UMO-2014/12/T/ST1/00627

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

The Menger property

Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\bigcup\left\{\mathcal{V}_{n}: n \in \mathbb{N}\right\}$ covers X

σ-compactness \rightarrow Menger \rightarrow Lindelöf

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$
- \mathfrak{d} : minimal cardinality of a dominating set

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$
- \mathfrak{d} : minimal cardinality of a dominating set
- $y \leqslant{ }^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$
- \mathfrak{d} : minimal cardinality of a dominating set
- $y \leqslant{ }^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional. X is Menger iff $\forall \varphi: X \xrightarrow{\text { cont }}[\mathbb{N}]^{\infty}, \varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$
- \mathfrak{d} : minimal cardinality of a dominating set
- $y \leqslant{ }^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional. X is Menger iff $\forall \varphi: X \xrightarrow{\text { cont }}[\mathbb{N}]^{\infty}, \varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

- A Lindelöf X with $|X|<\mathfrak{d}$ is Menger.

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \approx \mathbb{N}^{\uparrow \mathbb{N}}$

- $x \leqslant{ }^{*} d$ if $x(n) \leqslant d(n)$ for almost all n
- D is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{d \in D} x \leqslant^{*} d$
- \mathfrak{d} : minimal cardinality of a dominating set
- $y \leqslant{ }^{\infty} d$ if $y(n) \leqslant d(n)$ for infinitely many n

Theorem (Hurewicz)

Assume X is Lindelöf and zero-dimensional. X is Menger iff $\forall \varphi: X \xrightarrow{\text { cont }}[\mathbb{N}]^{\infty}, \varphi[X]$ is non-dominating in $[\mathbb{N}]^{\infty}$

- A Lindelöf X with $|X|<\mathfrak{d}$ is Menger.
- A dominating $X \subset[\mathbb{N}]^{\infty}$ is not Menger.

Products of Menger spaces

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger.

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger.
Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subset \mathbb{R}$ such that M^{2} is not Menger.

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger.
Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subset \mathbb{R}$ such that M^{2} is not Menger.
Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$:
There is a Menger $M \subset \mathbb{R}$ such that M^{2} is not Menger.

$$
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}|
$$

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger.
Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subset \mathbb{R}$ such that M^{2} is not Menger.
Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$:
There is a Menger $M \subset \mathbb{R}$ such that M^{2} is not Menger.

$$
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}|
$$

Problem (Scheepers)

Is there (ZFC) a Menger set $M \subset \mathbb{R}$ such that M^{2} is not Menger?

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

More combinatorics

$P(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space

$$
\begin{aligned}
P(\mathbb{N}) \ni a & \mapsto \chi(a) \in\{0,1\}^{\omega} \\
P(\mathbb{N}) \ni\{2,4,6, \ldots\} & \mapsto(0,1,0,1,0,1, \ldots) \in\{0,1\}^{\omega}
\end{aligned}
$$

$(P(\mathbb{N}), \oplus)$: topological group, $a \oplus b$: symmetric difference

$[\mathbb{N}]^{<\infty}$: finite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \quad$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty, \infty}$: infinite co-infinite subsets of \mathbb{N}

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbdd and $\kappa \leqslant \mathfrak{d} \Longrightarrow A \cup[\mathbb{N}]^{<\infty}$ is Menger

$$
A \cup[\mathbb{N}]^{<\infty} \subset P(\mathbb{N})
$$

$[\mathbb{N}]^{<\infty}$

κ-unbounded sets

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbdd and $\kappa \leqslant \mathfrak{d} \Longrightarrow A \cup[\mathbb{N}]^{<\infty}$ is Menger
$A \cup[\mathbb{N}]^{<\infty} \subset P(\mathbb{N})$

Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $c f(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $\operatorname{cf}(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

```
Corollary
\[
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subset P(\mathbb{N}) \text { s.t. } X \times Y \text { is not Menger }
\]
```


Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $\operatorname{cf}(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

```
Corollary
\[
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subset P(\mathbb{N}) \text { s.t. } X \times Y \text { is not Menger }
\]
```

- $\exists X \subset[\mathbb{N}]^{\infty},|X|=c f(\mathfrak{d}), X$ is $c f(\mathfrak{d})$-unbdd

Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $\operatorname{cf}(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

```
Corollary
\(c f(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists\) Menger \(X, Y \subset P(\mathbb{N})\) s.t. \(X \times Y\) is not Menger
```

- $\exists X \subset[\mathbb{N}]^{\infty},|X|=c f(\mathfrak{d}), X$ is $c f(\mathfrak{d})$-unbdd
- $|X|=c f(\mathfrak{d})<\mathfrak{d} \Rightarrow X$ is Menger

Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $\operatorname{cf}(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

$c f(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\exists X \subset[\mathbb{N}]^{\infty},|X|=c f(\mathfrak{d}), X$ is $c f(\mathfrak{d})$-unbdd
- $|X|=c f(\mathfrak{d})<\mathfrak{d} \Rightarrow X$ is Menger
- \exists Menger $Y \subset[\mathbb{N}]^{\infty}$ s.t. $X \times Y$ is not Menger

Main results

$A \subset[\mathbb{N}]^{\infty}$ is κ-unbounded

$$
\text { if }|A| \geqslant \kappa \text { and } \forall_{b \in[\mathbb{N}] \infty}\left|\left\{a \in A: a \leqslant^{*} b\right\}\right|<\kappa
$$

Theorem (PS, Tsaban '15)

If $X \subset[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbdd set or a $\operatorname{cf}(\mathfrak{d})$-unbdd set, then there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary

$c f(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\exists X \subset[\mathbb{N}]^{\infty},|X|=c f(\mathfrak{d}), X$ is $c f(\mathfrak{d})$-unbdd
- $|X|=c f(\mathfrak{d})<\mathfrak{d} \Rightarrow X$ is Menger
- \exists Menger $Y \subset[\mathbb{N}]^{\infty}$ s.t. $X \times Y$ is not Menger

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd

$$
\begin{aligned}
& b=\{2,4,6,8, \ldots\} \\
& b \leqslant * a \Rightarrow a^{c} \leqslant{ }^{*} b
\end{aligned}
$$

Main results

$A \subset[\mathbb{N}]^{\infty}, \infty$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty}, \infty \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$$
\begin{aligned}
& b=\{2,4,6,8, \ldots\} \\
& b \leqslant * a \Rightarrow a^{c} \leqslant^{*} b
\end{aligned}
$$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary

 $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger
Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

```
Corollary
bidi}=\mathfrak{d}=>\exists\mathrm{ Menger }X,Y\subsetP(\mathbb{N})\mathrm{ s.t. }X\timesY\mathrm{ is not Menger
```

- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi- \mathfrak{d}-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi- \mathfrak{d}-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger

$P(\mathbb{N})$
$[\mathbb{N}]^{<\infty}$
$[\mathbb{N}]^{\infty}, \infty$
$\tau[\mathbb{N}]<\infty]$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty}, \infty$ s. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi- \mathfrak{d}-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger

$P(\mathbb{N})$
$\left[\begin{array}{c}\mathbb{N}]^{<\infty} \\ \\ {[\mathbb{N}]^{\infty}, \infty} \\ \\ \hline \tau\left[[\mathbb{N}]^{<\infty}\right] \\ \hline\end{array}\right.$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty}, \infty$ s. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary

 $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi- \mathfrak{d}-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \rightarrow P(\mathbb{N}), \tau(a)=a^{c}$

$P(\mathbb{N})$
$[\mathbb{N}]^{<\infty}$
$[\mathbb{N}]^{\infty}, \infty$
$\left.\tau[\mathbb{N}]^{<\infty}\right]$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary

 $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi-d-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \rightarrow P(\mathbb{N}), \tau(a)=a^{c}$
- $X=\tau\left[A \cup[\mathbb{N}]^{<\infty}\right]=\left\{a^{c}: a \in A\right\} \cup \tau\left[[\mathbb{N}]^{<\infty}\right] \subset[\mathbb{N}]^{\infty}$

Main results

$A \subset[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary

 $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi-d-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \rightarrow P(\mathbb{N}), \tau(a)=a^{c}$
- $X=\tau\left[A \cup[\mathbb{N}]^{<\infty}\right]=\left\{a^{c}: a \in A\right\} \cup \tau\left[[\mathbb{N}]^{<\infty}\right] \subset[\mathbb{N}]^{\infty}$
- $X \subset[\mathbb{N}]^{\infty}$ is Menger and contains a \mathfrak{d}-unbdd set

Main results

$A \subset[\mathbb{N}]^{\infty}, \infty$ is bi- \mathfrak{d}-unbdd if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbdd $\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

Corollary

 $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ Menger $X, Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger- $\mathfrak{b i d i}=\mathfrak{d} \Rightarrow \exists$ bi-d-unbdd $A \subset[\mathbb{N}]^{\infty, \infty}$
- $A \cup[\mathbb{N}]^{<\infty}$ is Menger
- $\tau: P(\mathbb{N}) \rightarrow P(\mathbb{N}), \tau(a)=a^{c}$
- $X=\tau\left[A \cup[\mathbb{N}]^{<\infty}\right]=\left\{a^{c}: a \in A\right\} \cup \tau\left[[\mathbb{N}]^{<\infty}\right] \subset[\mathbb{N}]^{\infty}$
- $X \subset[\mathbb{N}]^{\infty}$ is Menger and contains a \mathfrak{d}-unbdd set
- \exists Menger $Y \subset P(\mathbb{N})$ s.t. $X \times Y$ is not Menger

$\mathfrak{b i d i}$

$\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$\mathfrak{b i d i}$

$\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty}$ s. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$$
\begin{gathered}
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{b i d i} \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}| \\
\max \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\} \leqslant \mathfrak{b i d i} \leqslant \min \{\mathfrak{r}, \mathfrak{d}\}
\end{gathered}
$$

\mathfrak{r} : min card of $A \subset[\mathbb{N}]^{\infty}$ s.t. there is no $s \in[\mathbb{N}]^{\infty}$ with s and s^{c} intersect all $a \in A$

$\mathfrak{b i d i}$

$\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$$
\begin{gathered}
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{b i d i} \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}| \\
\max \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\} \leqslant \mathfrak{b i d i} \leqslant \min \{\mathfrak{r}, \mathfrak{d}\}
\end{gathered}
$$

Observation (Mejia, Kamburelis, Węglorz)

$$
\mathfrak{b i d} \mathfrak{i}=\min \{\mathfrak{r}, \mathfrak{d}\}
$$

\mathfrak{r} : min card of $A \subset[\mathbb{N}]^{\infty}$ s.t. there is no $s \in[\mathbb{N}]^{\infty}$ with s and s^{c} intersect all $a \in A$

$\mathfrak{b i d i}$

$\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$$
\begin{gathered}
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{b i d i} \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}| \\
\max \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\} \leqslant \mathfrak{b i d i} \leqslant \min \{\mathfrak{r}, \mathfrak{d}\}
\end{gathered}
$$

Observation (Mejia, Kamburelis, Węglorz)

$$
\mathfrak{b i d} \mathfrak{i}=\min \{\mathfrak{r}, \mathfrak{d}\}
$$

$$
\mathfrak{b i d i}=\mathfrak{d} \Leftrightarrow \mathfrak{d} \leqslant \mathfrak{r}
$$

\mathfrak{r} : min card of $A \subset[\mathbb{N}]^{\infty}$ s.t. there is no $s \in[\mathbb{N}]^{\infty}$ with s and s^{c} intersect all $a \in A$

$\mathfrak{b i d i}$

$\mathfrak{b i d i}: \min$ card of $A \subset[\mathbb{N}]^{\infty, \infty} \mathrm{s}$. t. there is no b with $A \leqslant^{\infty} b, b^{c}$

$$
\begin{gathered}
|\mathbb{N}|=\aleph_{0} \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{b i d i} \leqslant \mathfrak{d} \leqslant \operatorname{cof}(\mathcal{M}) \leqslant \mathfrak{c}=|\mathbb{R}| \\
\max \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\} \leqslant \mathfrak{b i d i} \leqslant \min \{\mathfrak{r}, \mathfrak{d}\}
\end{gathered}
$$

Observation (Mejia, Kamburelis, Węglorz)

$$
\mathfrak{b i d i}=\min \{\mathfrak{r}, \mathfrak{d}\}
$$

$$
\mathfrak{b i d i}=\mathfrak{d} \Leftrightarrow \mathfrak{d} \leqslant \mathfrak{r}
$$

Problem

Assume $\mathfrak{r}<\mathfrak{d}$ and \mathfrak{d} is regular (e.g. in Miller's model). Is there a Menger set $M \subset \mathbb{R}$ such that M^{2} is not Menger?
\mathfrak{r} : min card of $A \subset[\mathbb{N}]^{\infty}$ s.t. there is no $s \in[\mathbb{N}]^{\infty}$ with s and s^{c} intersect all $a \in A$

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \cup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \cup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

Another applications

Hurewicz's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\}$ is co-finite for all $x \in X$.

σ-compactness \rightarrow Hurewicz \rightarrow Menger

Another applications

Corollary ($\mathfrak{b}=\mathfrak{d}$)

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Another applications

Corollary $(\mathfrak{b}=\mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary ($\mathfrak{b}=\mathfrak{d}$)

In the class of metrizable spaces every productively Menger space is productively Hurewicz.

Another applications

Corollary $(\mathfrak{b}=\mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b}=\mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.
\mathfrak{F}-Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

Another applications

Corollary $(\mathfrak{b}=\mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b}=\mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.
\mathfrak{F}-Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

Hurewicz $\rightarrow \mathfrak{F}$-Menger \rightarrow Menger

Another applications

Corollary $(\mathfrak{b}=\mathfrak{d})$

For every Menger, non-Hurewicz X there is a Menger $Y \subset P(\mathbb{N})$ such that $X \times Y$ is not Menger.

Corollary $(\mathfrak{b}=\mathfrak{d})$

In the class of metrizable spaces every productively Menger space is productively Hurewicz.
\mathfrak{F}-Menger's property: for every open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ of X there are finite $\mathcal{V}_{1} \subset \mathcal{U}_{1}, \mathcal{V}_{2} \subset \mathcal{U}_{2}, \ldots$ such that $\left\{n \in \mathbb{N}: x \in \bigcup \mathcal{V}_{n}\right\} \in \mathfrak{F}$ for all $x \in X$ (\mathfrak{F} is a nonprincipial filter).

Hurewicz $\rightarrow \mathfrak{F}$-Menger \rightarrow Menger
Corollary ($\mathfrak{b}=\mathfrak{d}$)
There is an ultrafilter \mathfrak{U} such that in the class of sets of reals Hurewicz $\leftrightarrow \mathfrak{U}$-Menger \leftrightarrow Menger

